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Social attitudes & latent constructs



Research on social attitudes 
often involves latent variables:

• Intelligence

• Social trust

• Anxiety, depression, happiness

• Personality

• Political ideology

• …
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Assumptions of latent data-generating 
processes in LVM's
• Linearity

• Principle-Components analysis

• Maximum-likelihood factor models

• Monotonicity
• Item-Response Theory

• Weighted-least squares factor models

• Linear constructs (latent dimensions form cartesian space)
• all models
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In reality …

• LDGP’s may be
• Non-linear

• Non-monotonic

• Latent constructs may be non-linear

We don’t know the properties of the LDGP – need to infer these from 
manifest data!
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Assumptions of 
• Linearity
• Monotonicity
• Dimensionality

Can latent variable models reproduce latent constructs when 
assumptions of linearity and/or dimensionality are violated?



Latent variable: Political ideology

Survey items:

- The United States should limit 
technology imports from China.

- The United States should 
increase military support to 
Ukraine.

- The people I disagree with 
politically are not evil.
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LDGP

• N = 1,000

• K = 12 items (5-point 
ordered Likert scales)

• 20 % measurement error

Latent variable models

• Principle components 
(PCA)

• Exploratory factor 
analysis (EFA)

• Item response theory 
(IRT)

• Physics-aided factor-
network analysis 
(PhaFNA)

Performance comparison

• Predicative accuracy 
(regression R-squared of 
predicted scores on 
latent construct)

• Computational time

Simulation setup



Scenario 1: Ideal case

LGDP

• 20% random 
measurement error

• Random-uniform 
transformation to 5-point 
ordered Likert-scale items

Latent variable

• Unidimensional

• Continuous

• Linear

Manifest data

• 12 Likert scale items



R2 = 0.97 
t = 0.3s

R2 = 0.96 
t = 1.5s

R2 = 0.98 
t = 2.1s

R2 = 0.95 
t = 1.6s



LGDP

• 20% random 
measurement error

• Non-linear Likert 
transformations

Latent variable

• Unidimensional

• Continuous

• Linear

Manifest data
• 12 Likert scale items

• 2/12: Linear
• 4/12: Quadratic
• 4/12: 50% linear, 50% quadratic
• 2/12: Exponential

Scenario 2: LGDP violates linearity



R2 = 0.48 
t = 0.3s

R2 = 0.32 
t = 3.4s

R2 = 0.52 
t = 8.1s

R2 = 0.91 
t = 2.3s



Scenario 3: Latent construct violates linearity

LGDP
• 20% random 

measurement error

• Linear and non-linear 
components fused 
together

Latent variable

• Continuous

• Non-linear

Manifest data
• 12  5-point Likert scale 

items

• Items inherit 40% 
linear & 40% non-
linear component





R2 = 0.43 
t = 0.3s

R2 = 0.4
t = 8.1s

R2 = 0.32 
t = 3.4s

R2 = 0.86 
t = 2.3s



Introducing PhaFNA

• Physics-aided, Factor Network Analysis

• Combines elements from factor analysis, IRT models, 
and statistical belief-network analysis

• Three basic ideas:

1. Treat item responses as physical particles that 
interact in latent space

2. Network communities of items physically anchor 
factors in latent space

3. Treats latent variables (i.e. factors) separate from 
latent space



Difference between latent factors and latent 
space
• Researchers commonly assume that latent factors live somewhere in 

a (wider) latent space

• Latent factors span the latent space in all conventional latent variable 
models
• Assumptions about linearity and dimensionality baked into latent space

• PhaFNA models differ in that
• Latent space and latent factors are conceptually separate

• Latent space “just is” (predefined space)

• Latent factors cut across the latent space in any possible direction



Latent space in PhaFNA

= Latent space
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Latent space in PhaFNA

= Latent space = Item responses = Latent factors
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The four forces in PhaFNA

• Spring-force: positively correlated item-responses
 attract each other (increases with distance)

• Electromagnetism: negatively correlated item-responses
 repulse each other (decreases with distance)

• Gravity: more popular item responses are more massive
(decreases with square of distance)

• Drag: All item-response particles lose momentum over time
(ensures faster model convergence)



Demonstration

https://philip-warncke.netlify.app/files/demonstration.html 

https://philip-warncke.netlify.app/files/demonstration.html






Applications

• Mapping the ideological space

• Tracing polarization across time



ANES 
2000



ANES 
2012



ANES 
2020



Mapping Polarization with Physics
Co-authored with Dino Carpentras (ETH Zurich), Yijing Chen (CEU), Bart de Bruin (Leiden), and Anne 
Speer (BIGSSS Bremen)



Conclusions

• Conventional latent variable models (LVM’s) struggle when
• LDGP’s introduce non-linearities

• Latent variables are non-linear

• PhaFNA is a novel latent variable modeling approach that simulates 
interactions between item responses in a physical latent space

• PhaFNA, more so than conventional LVM’s is capable of
• Restoring linear latent variables if LDGP’s introduce non-linearities

• Estimating non-linear latent variables



Next steps

• Developing diagnostic tools (non-linearities, multi-dimensionalities)

• Improving performance (e.g. implementation in Unity engine with 
GPU support)

• Implementation in higher dimensions
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