2. Main Res-IN algorithim
2.1 Item binarization
2.2 Res-In adjacency matrix
2.3 Force-directed location estimation
2.4 Coordinate rotation (PCA)
Welcome to the 2023 BIGSSS CSS 2023 workshop and tutorial on Response-Item Networks (ResIN) in R. For a theoretical overview of the method and its capabilities, and exciting applications, please refer to https://www.resinmethod.net/. Also, we strongly recommend our having the package documentation handy whilst working on this tutorial (https://cran.r-project.org/web/packages/ResIN/ResIN.pdf). To kick things off, we include a couple of teasers of different -graphs we will construct as part of this tutorial:
Data preparation & cleaning
Main algorithm
qgraph and igraph integration & visualization with ggplot
Advanced features of the ResIN function + exercise
To get started, let’s import some political attitude data from the 2020 wave of the American National Election Studies (ANES). The ResIN package takes care of all computational legwork for the examples presented here; we need to load the remaining packages solely for the purpose of visualization.
## Loading required packages: Here with "pacman" manager
if(!require("pacman")) install.packages('pacman')
library(pacman)
p_load(ResIN)
p_load(knitr)
p_load(tidyverse)
p_load(visNetwork)
## devtools::install_github("nsgrantham/ggdark") ## ggdark (fancy plotting) requires devtools install the first time around
p_load(ggdark)
## 2020 Wave of the ANES as example data
anes_timeseries_2020 <- read.csv("anes_timeseries_2020.csv")
Select items for ResIN network and optional co-variates
Clean data
ResIN node variables: Character, factor, or numeric are accepted. Be sure to categorize continuous variables beforehand and to apply uniform coding within each variable. ResIn handles character lables for numeric values very well - this feature is useful for visualization
Co-variates should be numeric
NA’s: Apply a uniform code for all
Non-monotonic Likert scale items do not need to be recoded <3
V200002 | V200003 | V200004 | V200005 | V200006 | V200007 | V200008 | V200009 |
---|---|---|---|---|---|---|---|
3 | 2 | 3 | 0 | -2 | -2 | -2 | 0 |
3 | 2 | 3 | 0 | 4 | -1 | 3 | 0 |
3 | 2 | 3 | 0 | -2 | -2 | -2 | 0 |
3 | 2 | 3 | 0 | -2 | -2 | -2 | 0 |
3 | 2 | 3 | 1 | -2 | -2 | -2 | 0 |
3 | 2 | 3 | 0 | -2 | -2 | -2 | 0 |
3 | 2 | 3 | 0 | -2 | -2 | -2 | 0 |
3 | 2 | 3 | 0 | -2 | -2 | -2 | 0 |
3 | 2 | 3 | 0 | -2 | -2 | -2 | 0 |
3 | 2 | 3 | 1 | 4 | -1 | 3 | 0 |
3 | 2 | 3 | 0 | -2 | -2 | -2 | 0 |
3 | 2 | 3 | 0 | -2 | -2 | -2 | 0 |
3 | 2 | 3 | 1 | 4 | -1 | 3 | 0 |
## Selecting Res-IN node variables:
anes_nodes <- dplyr::select(anes_timeseries_2020, c("V201336", "V202257",
"V201417", "V201312",
"V201416", "V201262",
"V202337", "V201258"))
## Recoding missing values (check ANES codebook!)
anes_nodes$V201336[anes_nodes$V201336 %in% c(-9, -8, -7, -6, -5, 99)] <- NA
anes_nodes$V202257[anes_nodes$V202257 %in% c(-9, -8, -7, -6, -5, 99)] <- NA
anes_nodes$V201417[anes_nodes$V201417 %in% c(-9, -8, -7, -6, -5, 99)] <- NA
anes_nodes$V201312[anes_nodes$V201312 %in% c(-9, -8, -7, -6, -5, 99)] <- NA
anes_nodes$V201416[anes_nodes$V201416 %in% c(-9, -8, -7, -6, -5, 99)] <- NA
anes_nodes$V201262[anes_nodes$V201262 %in% c(-9, -8, -7, -6, -5, 99)] <- NA
anes_nodes$V202337[anes_nodes$V202337 %in% c(-9, -8, -7, -6, -5, 99)] <- NA
anes_nodes$V201258[anes_nodes$V201258 %in% c(-9, -8, -7, -6, -5, 99)] <- NA
## Give more recognizable names
colnames(anes_nodes) <- c("abort", "income", "immigr", "welfare", "gay_mar",
"environm", "gun_own", "aid_black")
## Re-code response labels to make them more recognizable
anes_nodes <- anes_nodes %>% dplyr::mutate(
abort = dplyr::recode(abort, `1` = "never",
`2` = "spec_cases",
`3` = "in_need",
`4` = "always",
`5` = "other"),
income = dplyr::recode(income, `1` = "favor",`2` = "oppose", `3` = "neither"),
immigr = dplyr::recode(immigr, `1` = "send_back", `2` = "guest_prog",`3` = "neither"),
welfare = dplyr::recode(welfare, `1` = "increase",`2` = "decrease", `3` = "same",),
gay_mar = dplyr::recode(gay_mar, `1` = "recogn",`2` = "civ_union", `3` = "no_recogn"),
environm = dplyr::recode(environm, `1` = "regul+++",`2` = "regul++", `3` = "regul+", `4` = "neut",`5` = "regul-", `6` = "regul--", `7` = "regul---"),
gun_own = dplyr::recode(gun_own, `1` = "more_diffic",`2` = "easier", `3` = "same"),
aid_black = dplyr::recode(aid_black, `1` = "yes++",`2` = "yes+", `3` = "yes", `4` = "neut",`5` = "no", `6` = "no+", `7` = "no++"))
abort | income | immigr | welfare | gay_mar | environm | gun_own | aid_black |
---|---|---|---|---|---|---|---|
spec_cases | favor | send_back | decrease | no_recogn | regul— | same | no++ |
always | neither | neither | decrease | recogn | NA | same | neut |
always | favor | NA | increase | recogn | regul+++ | more_diffic | yes |
never | favor | send_back | same | recogn | regul+++ | same | NA |
in_need | neither | guest_prog | same | civ_union | neut | same | no+ |
always | neither | neither | same | recogn | NA | more_diffic | yes |
in_need | neither | guest_prog | increase | recogn | regul- | more_diffic | no++ |
always | neither | send_back | same | no_recogn | NA | more_diffic | no++ |
always | neither | send_back | same | recogn | NA | more_diffic | NA |
always | neither | guest_prog | same | civ_union | NA | easier | neut |
never | neither | neither | increase | no_recogn | regul+++ | more_diffic | yes++ |
spec_cases | oppose | neither | same | recogn | regul+++ | more_diffic | no++ |
always | neither | send_back | increase | civ_union | neut | more_diffic | no++ |
always | favor | neither | same | recogn | regul+++ | more_diffic | yes |
always | oppose | guest_prog | same | civ_union | NA | more_diffic | yes++ |
in_need | neither | neither | same | recogn | NA | easier | neut |
always | favor | neither | same | recogn | regul+ | same | neut |
always | favor | neither | same | recogn | regul+ | more_diffic | yes |
2.1 Item binarization
2.2 Res-In adjacency matrix
2.3 Force-directed location estimation
2.4 Coordinate rotation (PCA)
Expand original data-set into dummy variables for each possible item response
Results in \(n\) by \(\sum_{l}k\) data-frame, where \(k\) denotes the number of columns in the original data-frame, and \(\sum_{l}k\) is the sum of all unique item response options \(l\) within columns \(k\).
For the ANES example, 8 item selection results in a dataframe of \(5+3+3+3+3+7+3+7=34\) binary column vectors.
## Using the ResIN function from the ResIN package:
df_dummies <- ResIN::ResIN(anes_nodes)$df_dummies
## Number of collumns in the binarized, item-response data-frame:
dim(df_dummies)[2]
## [1] 34
abort_always | abort_in_need | abort_never | abort_other | abort_spec_cases | income_favor | income_neither |
---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 |
Compute pairwise correlation matrix
Set within-item correlations to zero
Set all negative correlations to zero (optional but recommended)
## Generate a symmetric correlation matrix & apply item response lables
res_in_cor <- ResIN(anes_nodes, remove_negative = FALSE, cluster = FALSE)$adj_matrix
abort_always | abort_in_need | abort_never | abort_other | abort_spec_cases | income_favor | |
---|---|---|---|---|---|---|
abort_always | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.48 |
abort_in_need | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.12 |
abort_never | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.36 |
abort_other | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.05 |
abort_spec_cases | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.36 |
income_favor | 0.48 | -0.12 | -0.36 | -0.05 | -0.36 | 0.00 |
income_neither | -0.10 | 0.04 | 0.12 | 0.00 | 0.04 | 0.00 |
income_oppose | -0.47 | 0.10 | 0.27 | 0.06 | 0.34 | 0.00 |
immigr_guest_prog | -0.18 | 0.06 | 0.03 | 0.03 | 0.14 | -0.16 |
res_in_cor <- ResIN(anes_nodes, remove_negative = TRUE)$adj_matrix
abort_always | abort_in_need | abort_never | abort_other | abort_spec_cases | income_favor | |
---|---|---|---|---|---|---|
abort_always | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.48 |
abort_in_need | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
abort_never | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
abort_other | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
abort_spec_cases | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
income_favor | 0.48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
income_neither | 0.00 | 0.04 | 0.12 | 0.00 | 0.04 | 0.00 |
income_oppose | 0.00 | 0.10 | 0.27 | 0.06 | 0.34 | 0.00 |
immigr_guest_prog | 0.00 | 0.06 | 0.03 | 0.03 | 0.14 | 0.00 |
We rely on a force-directed algorithm that models item response nodes as a simulated physical system
Positively correlated nodes attract one another; un-correlated (and negatively correlated) nodes repel one another
Many possible algorithms to choose from; we use the commonly used “Fruchterman-Reingold” method (main work-horse in igraph package)
Can be modeled in 2D or 3D; for simplicity we focus on 2D solution here
## Here we take advantage of the "layout_with_fr" function taken from the igraph package
res_in_layout <- ResIN(anes_nodes)$node_frame
x | y | node_names |
---|---|---|
-8.50 | -0.21 | abort_always |
1.34 | -0.41 | abort_in_need |
5.11 | 1.20 | abort_never |
2.61 | -2.06 | abort_other |
4.94 | -0.35 | abort_spec_cases |
-8.44 | 0.62 | income_favor |
1.81 | 1.25 | income_neither |
5.00 | 0.21 | income_oppose |
4.36 | -1.84 | immigr_guest_prog |
-6.83 | 0.04 | immigr_neither |
6.57 | 1.22 | immigr_send_back |
5.51 | 0.15 | welfare_decrease |
-9.33 | -0.45 | welfare_increase |
-1.56 | 0.12 | welfare_same |
4.14 | -0.61 | gay_mar_civ_union |
We use principle components analysis (PCA) to make graphical result more interpretable
X-axis rotated s.t. it captures most of the variance within the attitude network
We use orthogonal (non-distorting) rotation but different oblique rotations would theoretically be possible as well
## Performing PCA with the R-native "prcomp" function; Note that is step is no longer required as ResIN package automates this step for us
res_in_layout_pca <- prcomp(res_in_layout[,1:2])$x
res_in_layout[1:2] <- res_in_layout_pca
qgraph-package
igraph-package
Visualization with ggplot
## qgraph package (Epskamp and Costantini et.al.)
resin_qgraph <- ResIN_qgraph(anes_nodes, plot_graph = TRUE,
qgraph_arglist = list(layout = "spring", maximum = 1, vsize = 4,
DoNotPlot = TRUE, sampleSize = nrow(anes_nodes),
title = "ANES 2020 ResIN plot made with qgraph package",
mar = c(3,3,3,3), normalize = FALSE))
ResIN function can transform edge lists generated by igraph output to ggplot friendly data.frame
Here, we use the geom_curve() layer in ggplot for network visualization
We can add node-level covariates or network statistics to enhance our plot
## The ResIN function by default provides a plotting-optimized, edge-list data-frame
edgelist_frame <- ResIN(anes_nodes)$edgelist_frame
from | to | weight | from.x | from.y | to.x | to.y | x | y | node_names |
---|---|---|---|---|---|---|---|---|---|
abort_always | income_favor | 0.48 | -8.50 | -0.21 | -8.44 | 0.62 | -8.50 | -0.21 | abort_always |
abort_always | immigr_neither | 0.30 | -8.50 | -0.21 | -6.83 | 0.04 | -8.50 | -0.21 | abort_always |
abort_always | welfare_increase | 0.42 | -8.50 | -0.21 | -9.33 | -0.45 | -8.50 | -0.21 | abort_always |
abort_always | gay_mar_recogn | 0.67 | -8.50 | -0.21 | -7.68 | -0.28 | -8.50 | -0.21 | abort_always |
abort_always | environm_regul++ | 0.18 | -8.50 | -0.21 | -6.15 | 0.07 | -8.50 | -0.21 | abort_always |
abort_always | environm_regul+++ | 0.55 | -8.50 | -0.21 | -9.41 | 0.18 | -8.50 | -0.21 | abort_always |
abort_always | gun_own_more_diffic | 0.50 | -8.50 | -0.21 | -7.83 | 0.52 | -8.50 | -0.21 | abort_always |
abort_always | aid_black_yes | 0.14 | -8.50 | -0.21 | -5.05 | 0.08 | -8.50 | -0.21 | abort_always |
abort_always | aid_black_yes+ | 0.34 | -8.50 | -0.21 | -8.29 | -1.06 | -8.50 | -0.21 | abort_always |
abort_always | aid_black_yes++ | 0.45 | -8.50 | -0.21 | -9.35 | 0.90 | -8.50 | -0.21 | abort_always |
abort_in_need | income_neither | 0.04 | 1.34 | -0.41 | 1.81 | 1.25 | 1.34 | -0.41 | abort_in_need |
abort_in_need | income_oppose | 0.10 | 1.34 | -0.41 | 5.00 | 0.21 | 1.34 | -0.41 | abort_in_need |
abort_in_need | immigr_guest_prog | 0.06 | 1.34 | -0.41 | 4.36 | -1.84 | 1.34 | -0.41 | abort_in_need |
abort_in_need | immigr_neither | 0.01 | 1.34 | -0.41 | -6.83 | 0.04 | 1.34 | -0.41 | abort_in_need |
abort_in_need | welfare_decrease | 0.06 | 1.34 | -0.41 | 5.51 | 0.15 | 1.34 | -0.41 | abort_in_need |
There are many options to plot networks with ggplot. Here, we show an option using the geom_curve function which works well with edge-list type dataframes (i.e. with from.x, from.y, to.x, to.y edge-specific information).
ANES_net_fig <- ggplot() +
geom_curve(data = edgelist_frame, aes(x = from.x, xend = to.x, y = from.y,
yend = to.y), curvature = 0, color = "grey") +
## geom_curve requires the x, xend, y and yend aesthetics to be able to plot the network edges
geom_text(data = edgelist_frame, aes(x = from.x, y = from.y, label = from), size = 3, color = "black") +
geom_text(data = edgelist_frame, aes(x = to.x, y = to.y, label = to), size = 3, color = "black") +
## Make sure to plot node labels both based on the to and from columns in the plotting frame!
ggtitle("Belief Structure among ANES 2020 Respondents")+
theme_bw()+
expand_limits(x = c(min(edgelist_frame$x-2), max(edgelist_frame$x+2)),
y = c(min(edgelist_frame$y-2), max(edgelist_frame$y+2))) +
theme(axis.text.x = element_blank(), axis.title.x = element_blank(),
axis.text.y = element_blank(), axis.title.y = element_blank(),
axis.ticks = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), legend.position = "bottom",
legend.text = element_blank(), plot.title = element_text(hjust = 0.5))
Let’s add a few additional visual elements to enhance our plot. This step also prepares us to for multi-variate data-analysis leveraging each item-response node’s spacial position and various outside information. In this example, we show how to add information on Feeling-thermometer scores to map information on affective polarization between partisan groups onto the attitude space.
## Here, we use Democratic and & Republican feelings thermometers: V201156 and V201157
anes_timeseries_2020$V201156[anes_timeseries_2020$V201156 < 0] <- NA
anes_timeseries_2020$V201157[anes_timeseries_2020$V201157 < 0] <- NA
anes_nodes_plus <- cbind(anes_nodes, anes_timeseries_2020$V201157, anes_timeseries_2020$V201156)
colnames(anes_nodes_plus) <- c(colnames(anes_nodes), "V201156", "V201157")
## We would like to extract the mean of each thermometer variable for the subset of respondents who selected each item response:
ResIN_anes <- ResIN(anes_nodes_plus, node_vars = colnames(anes_nodes), node_covars = c("V201156", "V201157"),
node_costats = c("mean", "mean"), network_stats = TRUE)
edgelist_frame <- ResIN_anes$edgelist_frame
## We can simply calculate node-level affective polarization as the distance between Democrat and Republican FT's
edgelist_frame$aff_pola <- abs(edgelist_frame$V201156_mean - edgelist_frame$V201157_mean)
from | to | weight | from.x | from.y | to.x | to.y | x | y | node | R_mean_FT | D_mean_FT | node_label | aff_pola | NA | NA | NA | NA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abort_always | income_favor | 0.480 | -8.498 | -0.208 | -8.443 | 0.617 | -8.498 | -0.208 | abort_always | 0 | 0.0018063 | 4.041088 | 4.041088 | 28.74123 | 59.17015 | abort_always | 30.43 |
abort_always | immigr_neither | 0.302 | -8.498 | -0.208 | -6.832 | 0.038 | -8.498 | -0.208 | abort_always | 0 | 0.0018063 | 4.041088 | 4.041088 | 28.74123 | 59.17015 | abort_always | 30.43 |
abort_always | welfare_increase | 0.425 | -8.498 | -0.208 | -9.325 | -0.446 | -8.498 | -0.208 | abort_always | 0 | 0.0018063 | 4.041088 | 4.041088 | 28.74123 | 59.17015 | abort_always | 30.43 |
abort_always | gay_mar_recogn | 0.674 | -8.498 | -0.208 | -7.681 | -0.282 | -8.498 | -0.208 | abort_always | 0 | 0.0018063 | 4.041088 | 4.041088 | 28.74123 | 59.17015 | abort_always | 30.43 |
abort_always | environm_regul++ | 0.183 | -8.498 | -0.208 | -6.152 | 0.071 | -8.498 | -0.208 | abort_always | 0 | 0.0018063 | 4.041088 | 4.041088 | 28.74123 | 59.17015 | abort_always | 30.43 |
abort_always | environm_regul+++ | 0.545 | -8.498 | -0.208 | -9.406 | 0.175 | -8.498 | -0.208 | abort_always | 0 | 0.0018063 | 4.041088 | 4.041088 | 28.74123 | 59.17015 | abort_always | 30.43 |
abort_always | gun_own_more_diffic | 0.498 | -8.498 | -0.208 | -7.834 | 0.517 | -8.498 | -0.208 | abort_always | 0 | 0.0018063 | 4.041088 | 4.041088 | 28.74123 | 59.17015 | abort_always | 30.43 |
abort_always | aid_black_yes | 0.139 | -8.498 | -0.208 | -5.052 | 0.078 | -8.498 | -0.208 | abort_always | 0 | 0.0018063 | 4.041088 | 4.041088 | 28.74123 | 59.17015 | abort_always | 30.43 |
abort_always | aid_black_yes+ | 0.345 | -8.498 | -0.208 | -8.289 | -1.063 | -8.498 | -0.208 | abort_always | 0 | 0.0018063 | 4.041088 | 4.041088 | 28.74123 | 59.17015 | abort_always | 30.43 |
abort_always | aid_black_yes++ | 0.452 | -8.498 | -0.208 | -9.348 | 0.900 | -8.498 | -0.208 | abort_always | 0 | 0.0018063 | 4.041088 | 4.041088 | 28.74123 | 59.17015 | abort_always | 30.43 |
abort_in_need | income_neither | 0.038 | 1.336 | -0.411 | 1.806 | 1.254 | 1.336 | -0.411 | abort_in_need | 0 | 0.0023380 | 1.424381 | 1.424381 | 48.37396 | 40.89372 | abort_in_need | 7.48 |
abort_in_need | income_oppose | 0.098 | 1.336 | -0.411 | 5.004 | 0.207 | 1.336 | -0.411 | abort_in_need | 0 | 0.0023380 | 1.424381 | 1.424381 | 48.37396 | 40.89372 | abort_in_need | 7.48 |
abort_in_need | immigr_guest_prog | 0.056 | 1.336 | -0.411 | 4.362 | -1.836 | 1.336 | -0.411 | abort_in_need | 0 | 0.0023380 | 1.424381 | 1.424381 | 48.37396 | 40.89372 | abort_in_need | 7.48 |
abort_in_need | immigr_neither | 0.006 | 1.336 | -0.411 | -6.832 | 0.038 | 1.336 | -0.411 | abort_in_need | 0 | 0.0023380 | 1.424381 | 1.424381 | 48.37396 | 40.89372 | abort_in_need | 7.48 |
abort_in_need | welfare_decrease | 0.065 | 1.336 | -0.411 | 5.507 | 0.154 | 1.336 | -0.411 | abort_in_need | 0 | 0.0023380 | 1.424381 | 1.424381 | 48.37396 | 40.89372 | abort_in_need | 7.48 |
ANES_dark <- ggplot() +
geom_curve(data = edgelist_frame, aes(x = from.x, xend = to.x, y = from.y,
yend = to.y, size = weight^10), curvature = 0.15, color = "grey", alpha = 0.4) +
## Note that we use the size aesthetic to control the thickness of the graph edges
geom_text(data = edgelist_frame, aes(x = from.x, y = from.y, label = from, color = aff_pola), size = 6) +
geom_text(data = edgelist_frame, aes(x = to.x, y = to.y, label = to, color = aff_pola), size = 6) +
## Make sure to plot node labels both based on the to and from columns in the plotting frame
ggtitle("Belief Structure among ANES 2020 Respondents")+
expand_limits(x = c(min(edgelist_frame$x-1.5), max(edgelist_frame$x+1.5)),
y = c(min(edgelist_frame$y-1.5), max(edgelist_frame$y+1.5))) +
scale_color_continuous(name = "Intensity of Partisan Affective Polarization", high = "yellow", low = "blue")+
scale_size_continuous(guide = "none")+
dark_theme_gray()+
theme(axis.text.x = element_blank(), axis.title.x = element_blank(),
axis.text.y = element_blank(), axis.title.y = element_blank(),
axis.ticks = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), legend.position = "bottom",
legend.text = element_blank(), plot.title = element_text(hjust = 0.5, size=18))
Although statistical analysis with ResIN can be as complex as you want, we are simply correlating feelings thermometer scores with the spacial location of ResIN nodes. Also, we run a simple linear regression model predicting whether left-wing or right wing attitudes more easily connect to other idea elements in the belief system.
## Correlation between ResIN Left-right position and mean Republican feelings thermometer:
cor(ResIN_anes$node_frame$x, ResIN_anes$node_frame$V201156_mean)
## [1] 0.9636615
## Simple regression model predicting node centrality from squared x-position
ResIN_anes$node_frame$x_sq <- (ResIN_anes$node_frame$x-mean(ResIN_anes$node_frame$x))^2
summary(lm(ResIN_anes$node_frame$Closeness ~ ResIN_anes$node_frame$x +
ResIN_anes$node_frame$x_sq))
##
## Call:
## lm(formula = ResIN_anes$node_frame$Closeness ~ ResIN_anes$node_frame$x +
## ResIN_anes$node_frame$x_sq)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.665e-04 -1.013e-04 1.499e-05 1.024e-04 4.021e-04
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.466e-03 8.376e-05 29.437 < 2e-16 ***
## ResIN_anes$node_frame$x 2.660e-05 9.336e-06 2.849 0.00773 **
## ResIN_anes$node_frame$x_sq -5.354e-06 2.123e-06 -2.522 0.01700 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0002375 on 31 degrees of freedom
## Multiple R-squared: 0.5847, Adjusted R-squared: 0.5579
## F-statistic: 21.82 on 2 and 31 DF, p-value: 1.216e-06
adj_matrix: The k*k ResIn adjacency matrix where k are all unique item responses across all items
same_items: A character vector of length k grouping the ResIn nodes by the original items they pertain to. Useful for grouped plotting of ResIn items
edgelist_frame: A ggplot friendly edge-list dataframe. The dataframe has as many rows as ResIn network edges. Features plotting coordinates for all graph edges and nodes as well as node-level network statistics if called for by the main function.
node_frame: A ggplot friendly node-list dataframe. The dataframe has as many rows as ResIn network nodes. Features plotting coordinates for all nodes as well as node-level network statistics if called for by the main function.
graph_structuration: Named vector containing graph-level structuration statistics.
graph_centralization: Named vector containing graph-level centralization statistics.
## Importing ESS 2018 dataset and selecting all relevant variables
ESS_9 <- read.csv("ESS_9.csv")
ESS_9_n <- ESS_9 %>% dplyr::select(cntry, lrscale, gincdif, freehms, impcntr,
ipstrgv, ipeqopt, impenv)
## Sub-setting only Austrian respondents
ESS_9_ch <- ESS_9_n[ESS_9_n$cntry=="CH", ]
## Very simple example employing the ResIn_gen function to ANES data:
ResIN_ANES <- ResIN(anes_nodes, EBICglasso = TRUE, network_stats = TRUE)
## Here we need to do just a little bit of prep-work for the visNetwork package
## At the node level, visNetwork minimally needs a unique id column.
## Additional columns such as "label", "group", and "title" are optional but very useful for interactive plotting
ResIN_ANES$node_frame$id <- ResIN_ANES$node_frame$node_names
ResIN_ANES$node_frame$label <- ResIN_ANES$node_frame$node_names
ResIN_ANES$node_frame$group <- ResIN_ANES$same_items
## The "title" column allows for a flexible HTML pop-up window as part of the integration.
## Here, we customize this window with network descriptive statistics:
ResIN_ANES$node_frame$title <- paste0("<center> <strong>", ResIN_ANES$node_frame$label, "</strong> </center> <br>",
"Strength centrality: ", round(ResIN_ANES$node_frame$Strength, 2), "<br>",
"Betweeness centrality: ", ResIN_ANES$node_frame$Betweenness, "<br>",
"Closeness centrality: ", round(ResIN_ANES$node_frame$Closeness, 3) , "<br>",
"Expected influence: ", round(ResIN_ANES$node_frame$ExpectedInfluence, 2), "<br>")
## At the edge-level, visNetwork minimally requires a "from" and "to" vector.
## Here we additionally specify the edge weights as "value" collumn.
ResIN_ANES$edgelist_frame$value <- ResIN_ANES$edgelist_frame$weight
## Note how we keep the visualization as sparse as possible by specifying a 0-degree nearest neighbor highlighting option:
ResIN_ANES_plot <- visNetwork(ResIN_ANES$node_frame, ResIN_ANES$edgelist_frame,
main = "Interactive ANES 2020 Belief System Visualization") %>%
visPhysics(solver = "forceAtlas2Based", forceAtlas2Based = list(stabilization = 10)) %>%
visOptions(highlightNearest = list(enabled = TRUE, degree = 0, hover = TRUE)) %>%
visNodes(size = 24) %>% visInteraction(hideEdgesOnDrag = TRUE)
saveRDS(ResIN_ANES_plot, "ResIN_ANES_plot.rds")